TEST-2

1. a) i) Given : a = (135)(12) = (1235), b = (1579) to compute : $a^{-1}ba, a^{-1} = (5321)$ then $a^{-1}ba = (5321)(1579)(1235) = (1)(2)(3795)$

ii) Klein y-group is

 $K_y = \{l, I, j, k\}$

Whose multiplication table is

	1	i	j	k
1	1	i	j	k
i	i	1	k	j
j	j	k	1	i
k	k	J	i	i

We see that $i^2 = j^2 = k^2 = 1$

Since No element in the group has order equal to order of the group is 4 So, it is not cyclic.

ŀ

(i)
$$x^{n} - 1 = 0$$

 $x^{n} = 1, x^{n} = (\cos 2\pi r + i\sin 2\pi r), r = 0, ..., 1, n - 1$
 $x = (\cos 2\pi r + i\sin 2\pi r)^{1/4}$
 $= \left(\cos \frac{2\pi r}{n} + i\sin \frac{2\pi r}{n}\right)$
 $= \frac{e^{i2\pi r}}{n}, r = 0, I, ..., n - 1$
Group $G = \left\{1, \frac{e^{i2\pi \times 1}}{n}, \frac{e^{i2\pi \times 2}}{n}, ..., \frac{e^{i2\pi(n-1)}}{n}\right\}$
We see $G = \{\omega^{\circ}, \omega^{1} ... \omega^{n-1}\} \left(\omega = e^{\frac{i2\pi}{n}}\right)$

We see that G is closed under multiplication and w not is the increase of wt and 1 is the identify and G is generated by ω

So $G = \langle \omega \rangle$ and is cyclic

Since R is commutative using with unit element.

We have to prove that R is a division ring which proves R is a field.

Let $O \neq a \; E \; R$ be any non zero element

https://plutusias.com/

Let $aR = \{ar/reR\}$

Then we see that aR is a ideal.

By given condition aR = R or $aR = \{o\}$

But $aR \neq \{O\}$ as $a \neq O$ and $a = a.i \ \mathcal{E} aR$.

Hence aR = R

Now [$\mathcal{E}R$] 1 $\mathcal{E}aR \Rightarrow b\mathcal{E}R$

S.t $1 = ab \Rightarrow b$ is right in relse of a

Thus R is a division Ring

Hence R is a field.

(i)

 $F(z) = 2^2$

Let

z = x + iy $F(z) = (x + iy)^2 = x^2 - y^2 + 2ixy$

Comparing it with u + iv

$$u = x^{2} - y^{2}$$
 and $v = 2xy$
 $u_{x} = 2x$, $u_{y} = 2y$, $v_{x} = 2y$, $y_{y} = 2x$

 $u_x = v_v$ and $u_v = v$

C-R equation is satisfied

 \therefore F(z) is analytic

(ii)
$$F(z) = 2xy + (x^2 - y^2)$$

Hence u = 2xy, $v = x^2 - y^2$

$$U_x = 2y, u_y = 2x, v_x = 2x, v_y = -2y$$
$$U_x \neq v_y$$

So C – R equation is satisfied.

F(z) is not analytic. ...

(iii)

(ii)

$$\omega = \sin z$$
, let $z = x + iy$
 $\omega = \sin(x + iy) = \sin x \cos y + \cos x \sin y$

$$=$$
 sinx coshhy $+$ icosx sinhy

$$u = sinx coshy and v = cosx sinhy$$

$$\frac{\int v}{\int x} = -\sin x \sinh y, \frac{\int v}{\int y} = \cos x \cosh y$$

We see that

$$\frac{\int u}{\int x} = \frac{\int v}{\int y}$$
 and $\frac{\int v}{\int x} = \frac{\int u}{\int y}$

Hence u and v satisfy C-R equation

 $\therefore \omega$ is analytic.

(iv) $F(z) = \overline{z}$

Let z = x + iy, F(z) = x - iy

U = x and v = y

$$u_x = 1$$
, $u_y = 0$ and $v_x = 0$, $v_y = 1$
 $u_x = v_y$ and $u_y = -v_x$

 \therefore F(z) is analytic.

(d) Given $x^3 - ax + 1 = 0$

F(x) =
$$x^3 - 9x + 1 = 0$$

Minimize $Z = x_1 + x_2$
S.C
If Max $z = -x_1 - x_2 + OS_1 + OS_2 - MA_1 - MA_2$
S.C
 $2x_1 + x_2 \ge 0$
 $x_1, ix_2 \ge 0$
If Max $z = -x_1 - x_2 + OS_1 + OS_2 - MA_1 - MA_2$
S.C
 $2x_1 + x_2 - s_1 + OS_2 + A_1 + OA_2 = 4$
 $x_1 + 7x_2 + OS_1 - S_2 + OA_1 + A_2 = 7$

 $x_1, x_2, s_1, z_2, A_1, A_2 \ge O$

Phase-I

	Cj	0	0	0	0	-1	-1		
СВ	Basic	x ₁	x ₂	s ₁	s ₂	A ₁	A ₂	j	0
-1	A ₁	2	1	-1	0	1	0	4	4/1
-1	A ₂	1	(7)	0	-1	0	1	7	7/7=1
$Zj = \{CI$	B CJ}	-3	-8	1	1	-1	-1		
Cj=Cj-Z	j	+3	+8	-1	-1	0	0		

	Cj	0	0	0	0	-1	-1		
C _B	Basis	x ₁	x ₂	s ₁	s ₂	A ₁	A ₂	b	θ

-1	A ₁	(13/7)	0	-1	1/7	1	-1/7	3	21/13
0	x ₂	1/7	1	0	-1/2	0	1/7	1	
Zj		-13/17	0	1	-1/7	-1	1/7	-3	
Cj-Zj		13/17	0	-1	1/7	0	-1/7		

	Cj	0	0	0	0	-1	-1		
C _B	Basis	x ₁	x ₂	s ₁	s ₂	A ₁	A ₂	b	θ
0	X ₁	1	0	-7/13	1/13	7/13	-1/13	21/13	
0	x ₂	0	1	-1/3	-2/3	-1/13	-12/19	10/13	
Zj		0	0	0	0	0	0		
Cj-Zj		0	0	0	0	-1	-1		

All Cj S \leq 0 and Max $z_1 = 0$ DUTUS Phase II

	Cj	-1	-1	0	0	b
Basis	C _B	x ₁	x ₂	S ₁	S ₂	21/13
-1	x ₁	1	0	-7/13	-1/13	21/13
-1	x ₂	0	1	-1/13	2/23	
Zj	100	-1	-1	8/13	1/13	
Cj-Zj	0	0	-8/13	-13		

All Cj S ≤ 0

$$\therefore$$
 (x₁, x₂) = $\left(\frac{21}{13}, \frac{10}{13}\right)$ is

The optional solution

Max
$$z = \frac{-13}{13}$$
, \therefore Min $z = \frac{31}{13}$

2(a) Given R is a integral domain

Since Ch R = P, $Px = 0 \lor x \varepsilon R$

Now $(a + b)^p = a^p - 1 \operatorname{Pc}_1 a^{p-1} b_{\dots} \operatorname{PC}_p b^p$ (as R is comutative)

We know that

 $P|PC_r, V_r, I \le r < p-1$

Thus each P_{cr}is a multiple of P.

Since a^{p-1}_{b} , $a^{p-2}_{b}^{2}$... are all in p,

We find P_c , $a^{p-1}b$, $Pc_2a^{p-2}b^2$, are all zero.

Hence $(a + b)^p = a^p + b^p$.

(b)
$$\int_{0}^{2\pi} \frac{\sin^{2} \theta}{a + b \cos \theta} do$$
, $a > b > 0$.
We have $I = \int_{0}^{2\pi} \frac{\sin^{2} \theta}{a + b \cos \theta} do$

$$= \int_{C} \frac{\left\{\frac{1}{2}\left(2 - \frac{1}{2}\right)^{2}\right\}}{\left\{a + \frac{1}{2}^{2}\left(2 + \frac{1}{2}\right)\right\}} \frac{d_{2}}{i2}$$

$$(z = \cos \theta + i\sin \theta)$$
Sin $\theta = \frac{z + \frac{1}{2}}{2i}$
Cos $\theta = \frac{2 + \frac{1}{2}}{z}$

$$= \frac{l}{2i} \int_{C} \frac{(z^{2} - 1)^{2}}{z^{2}(bz^{2} + 2ab + b)} d_{2}$$

$$= -\frac{1}{2ib} \int_{Cz^{2}} \frac{(z^{2} - 1)^{2}}{[z^{2} + \frac{2a}{b} + 1]} d_{2}$$

$$= -\frac{1}{2i} \int_{C} F(z) d_{2}, say$$

Here C is a unit circle

F(z) has a pole of order two at z = 0 and poles at α , β where α , β are the roots of the $z^2 + \left(\frac{a}{b}\right)2 + 1 = 0$

Or
$$z = \frac{-a + \sqrt{a^2 - b^2}}{b} = \alpha$$
, $z = \frac{-a - \sqrt{a^2 - b^2}}{b} = \beta$

Since a, b>0, $|\beta|>1,$ Also $|\alpha\beta|=1$ there for $|\alpha|{<}|$

Thus $z = \alpha$ is a simple Pole

And z = 0 are double pole inside c

Residence az =
$$\alpha$$
.is $\frac{lin}{z \to \alpha} (z - \alpha) \left[-\frac{1}{2ib} \frac{(z^2 - 1)^2}{2^2(2 - \alpha)(z - \beta)} \right]$

$$= \frac{-(\alpha - \beta)^2}{2ib(\alpha - \beta)}$$
$$= \frac{-1}{2ib}(\alpha - \beta) = \frac{-1}{2ib} \cdot \frac{2}{b}\sqrt{a^2 - b^2}$$
$$= \frac{i}{b}\sqrt{a^2 - b^2}$$

Residue at z = 0 is

Coefficient of
$$\frac{1}{2}$$
 in $\frac{(z^2-1)^2}{2ibz^2(z^2+2b^{(2)})^2+1}$
= coefficient of $\frac{1}{z}$ in $\frac{1}{2ibz^2}(1-2z+24)\left(1+\frac{2a}{b}+2+z^2\right)^{-1}$
 $=\frac{a}{ib^2}=\frac{-a^1}{v^2}$
 $\therefore \qquad \int_0^{2\pi} \frac{\sin^2\theta}{a+bcos\theta} \, do = 2\pi i \times \Sigma RT$
 $= 2\pi i \left[\frac{i}{b}\sqrt{a^2-b^2}-\frac{ai}{b^2}\right]$
 $=\frac{2\pi i}{b^2} \left[a-\sqrt{a^2-b^2}-\frac{ai}{b^2}\right]$
(a) $ox + 2y + z = 9$
 $2x + 20y - 2z = -44$
 $-2x + 3y + 10z = 22$
 $x = \frac{1}{10}(9-2y-z)$
 $y = \frac{1}{20}[-44-2x+2z]$
 $z = \frac{1}{10}[22+2x-3y]$
 $x^{k+1} + \frac{1}{10}[9-2y^k - z^k]$
 $y^{k+1} = \frac{1}{20}[2z+2x^{k+1} - 3y^{k+1}]$
 $x^\circ = 0, y^\circ = 0, z^\circ = 0$
 $x_1 = 9, y_1 = -2.29, z_1 = 3.07$
 $x_2 = 1.05, y_2 = -2, z_2 = 3.01$
 $x_3 = 1, y_3 = -2, z_3 = 3$

(a) Let $A = (q_0)$ be a maximal ideal $q_0 \neq 0$

```
Suppose q_0 = 0, then since R is not a filed, at least one O \neq b \in R
S + b^{-1} does not exist
Let B (b) and as q_0 = 0, A = (0)
And O \le B \le R \ge A \le B \le R
Now B \neq A as b & B, b \neq 0 and A = (0)
B \neq R as I & R but I & B
Note if l \& B = (b) then \exists some x S + l = bx showing that b is invesible which is not be
Hence a_0 \neq O
(ii) q_0 is not a unit
Suppose q_0 is a unit then q_0 q_0^{-1} = 1
q_0 \mathscr{E} A, q_0^{-1} \mathscr{E} R | q_0 q_0^{-1} \mathscr{E} A
1 & R
A = R
Which is not possible as A is maximal thus q_0 is not a unit
(iii) Let now q_0 = bc for some b, c & R, We show either b or c is a unit
Let B = (b)
Since q_0 = bc, q_0 \& B
\Rightarrow all multiples of q<sub>0</sub> are in B
A \leq B
But A is maximal thus either B = R or B = A
If B = R, then l \& B = (b) as l \& R
l = ab for some x
b is a unit
If B = a, then b & A = (q_0)
B = ya_0 for some y
q_0 = bc = yq_0C
q_0 - yq_0C = 0
q_0(1-yc)=0
1 - yc = 0 as (q_0 \neq 0)
C is unit
```


$$3(b) \int_{\mathcal{C}} \frac{z+y}{z^2+2z+5} d_z, \text{ C is } |Z+1-i| = 2$$
$$F(z) = \frac{z+4}{z^2+2z+5}$$

Poles of the equation F(z) is given by $z^2 + 2z + s = 0$

$$z = \frac{-2\pm\sqrt{-lb}}{2} \Rightarrow z = \frac{-2\pm4i}{2}$$
$$Z = -1 + 2i, -1 - 2i$$

Given curve is a circle with center at (-1, 1) and radius 2

So only z = -1 + 2i is inside the continuous.

Residue at $(Z = -1 + 2i) = \frac{lt}{z \to (-1+2i)} \frac{(2+1-2i)(Z+4)}{(Z+1+2i)(Z+1-2i)} = \frac{3+2i}{4i}$

According to Cauchy integral formula.

$$\int_{C} F(z)d_{2} = 2\pi i \sum R^{+}$$

$$\int_{C} \frac{z+y}{z^{2}+2z+3} = \frac{\pi}{2}(3+2i)$$

$$\int_{0}^{1} \frac{x}{1+x} d_{x}$$
Here n = 6, h = $\frac{b-a}{n} = \frac{1-0}{6} = \frac{1}{6}$

$$\boxed{\begin{array}{c} \hline F(x) \\ z_{0} = 0 & 0 \\ \hline z_{1} = \frac{1}{6} & \frac{2}{3} \\ \hline z_{2} = \frac{1}{3} & \frac{1}{2} \\ \hline z_{3} = \frac{1}{2} & \frac{2}{3} \\ \hline z_{4} = \frac{2}{3} & \frac{4}{5} \\ \hline z_{5} = \frac{5}{6} & \frac{10}{11} \\ \hline z_{6} = 1 & \frac{1}{2} \\ \hline \end{array}}$$
We know that $\int_{0}^{1} \frac{x}{4} = -\frac{h}{2} F(x) + 2(F(x)) + F(x) + F(x) + F(x)$

We know that $\int_{0}^{1} \frac{x}{1+x} d_{x} = \frac{h}{2} [F(x_{0}) + 2\{F(x_{1}) + F(x_{2}) + F(x_{3}) + F(x_{4}) + F(x_{5}) + F(x_{6})\}]$ $= \frac{1}{12} \Big[0 + 2 \Big\{ \frac{2}{7} + \frac{1}{2} + \frac{2}{3} + \frac{4}{5} + \frac{10}{11} + \frac{1}{2} \Big\} \Big]$ = .305226 $\simeq .305$

4(a) Let M be a maximal ideal of R.

Since R is Commutative ring with unity

 $\frac{R}{M}$ is also a commutative ring with unity

Let $x + M \in \frac{R}{M}$ be anynon zero element

Then $x + M \neq M = ||x \notin M|$

Let $\mathbf{xR} = \{\mathbf{xr} / \mathbf{r} \in \mathbf{R}\}$ It is easy to verify that xR is an ideal of R So M + xR will be ideal of R. $x = 0 + x.1 \in M + xR$ $M < M + xR \le R$ M is maximal = M + xR = RThus $|\in R = | | \in M + xR$ l = m + xrfor some $m \in N$, $r \in R$ l + M = (m + xr) + M= (m + M) + (xr + M)=(x+M)(r+M)r + M is multiplication inverse of x + MHence $\frac{R}{M}$ is a field Since $\frac{R}{M}$ is a field then $\frac{R}{M}$ is a integral domain. Thus M is a prime ideal $F(z) = \frac{z^2 - 1}{(z + 2)(z + 3)} = 1$ $\frac{5Z+7}{(z+2)(z+3)}$ (b) Resolving into partial fractions, we get

$$F(z) = \frac{1+3}{z+2} \frac{-8}{z+3}$$

(i) 2 < |Z| < 3. Then $\frac{2}{|Z|} < 1$ and $\frac{|Z|}{3} < 1$

$$F(z) = \frac{1+3}{z} \left(1 + \frac{2}{z} \right)^{-1} - \frac{8}{3} \left(1 + \frac{2}{3} \right)^{-1}$$
$$= 1 + \frac{3}{2} \left(1 + \frac{2}{z} \right)^{-1} - \frac{8}{3} \left(1 + \frac{2}{3} \right)^{-1}$$
$$= 1 + \frac{3}{2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{2}{z} \right)^n - \frac{8}{3} \sum_{n=0}^{\infty} (-1) \left(\frac{z}{3} \right)^n$$
$$= 1 + \frac{3}{z} \sum_{n=0}^{\infty} (-1)^n \left(\frac{2}{z} \right)^n - \frac{8}{3} \sum_{n=0}^{\infty} (-1) \left(\frac{z}{3} \right)^n$$

(ii) |z| > 3 then $\frac{3}{|z|} < 1$

:.

$$\therefore F(z) = 1 + \frac{3}{2} \left(1 + \frac{2}{z} \right)^{-1} - \frac{8}{z} \left(1 + \frac{3}{z} \right)^{-1}$$
$$= 1 + \frac{3}{z} \sum_{n=0}^{\infty} (-1)^n \left(\frac{2}{z} \right)^n - \frac{8}{z} \sum_{n=0}^{\infty} (-1)^n \left(\frac{3}{z} \right)^n$$

4(c) Total requirement = 340

Total availability = 340

 \therefore The given problem is balanced using vogel's Approximation method initial basic feasible solution is

4	1	2	6	9	100	
(30)		(70)				
6	4	3	5	7	120	
(10)		(20)		(90)		
5	2 (50)	6	4 (70)	8	120	21
40	50	70	90	90	2	

Now finding the value of 4i and y

As the maximum, no of basic cells must exist in the 2nd row

Putting $4_z = 0$, and finding the values of 4_i 's and v_j 's using.

$$\Delta_{ij} = 4_i + v_j - c_{ij}$$

4	1	2	6	9	-2
(30)	0	(70)	-ve	-ve	
6	4	3	5	7	0
(10)	-ve	(1)	(20)	(90)	
5	2	6	4	8	-1
(0)	(50)	-ve	(70)	-ve	
6	3	4	5	7	

Since the net evaluation in the cell (2, 3) is +ve therefore the current basic Feasible solution is not optional.

 \therefore the cell (2, 3) enters the basis.

We allocate the unknown quantity a loop involving basic cells around this entering cells.

Let $\theta = 10$, $x_{23} = 0$ (non-basic)

The cell (2, 3) l_0 areas the basis

The new basic feasible solutions is

4	1	2	6	9	
(40)		(60)			
6	4	3	5	-1	
		(30)	(20)	(90)	
5	2	6	4	8	
	(50)		(70)		\cup S

Again we calcuate u_i, v_j's

				11.12			
	4	1	2	6	9	5	
	(40)	(1)	(60)	(-1)	(-1)		
	6	4	3	5	7	0	
-	(-1)	(-1)	(10)	(20)	(90)	_	
	5	2	6	4	8	-1	
	-1	(50)	(-)	(70)	(-)		
	5	3	3	5	7		

Since the net evaluation in the cell (1, 2) is +ve.

 \therefore the current basic feasible

Solution is not optional.

Making a closed 100P

Let $\theta = 20$

The new basic feasible solutions is

4	1	2	6	9		
(40)	(20)	(40)				
6	4	3	5	7		
		(30)	1	(90)	1	0
5	2	6	4	8		N
	(30)	0	(90)	1.17	0	U

Now again calculating ui's and vj's

			10 - A - A		Water and	E
4	1	2	6	9	0	
(40)	(20)	(40)				and you the
6	4	3	5	7	1	
		(30)		(90)		
5	2	6	4	8	1	
	(30)		(90)			
4	1	2	3	6		

Since all $\Delta_{ij} \leq O$

 \therefore the current basic feasible solutions is optional.

The optional transportation cost = 1400.

5(a) Let $h \in H$, $k \in K$ be any element

Then $h \in H$, $k \in K \le 4$, $k \in K$, is normal in 4.

Gives
$$(h^{-1})^{-1} k h^{-1} \in k l h^{-1} k h^{-1} \in k$$

$$K^{-1} h k h^{-1} \in k$$
$$K^{-1} h k h^{-1} \in H n k = (e)$$
$$hk = kh.$$

 $b(i) \frac{Sinz-z}{z^3}$

we expand it

$$= \frac{\left(z - \frac{z^3}{3!} + \frac{z^5}{5!} \dots\right) - z}{z^3}$$
$$= \left(\frac{1}{3!} - \frac{z^2}{5!} \dots\right)$$

Since it does not have any principal term. So it has removable Singularity at z = 0.

$$\frac{\cot \pi 2}{(z-a)^3} = \frac{\cos \pi x}{\sin(\pi z)(z-a)^3}$$

Poles of F(z) use obtained by equaling to zero the denominator of F(x). Then we have

 $(z-a)^3\sin\pi z=0$

:.

Ans

 $\sin \pi z = 0$ $0.(z-a)^3 = 0$

Now $\sin \pi z = 0$ gives $\pi z = n\pi$ or z = n where n is any integal

And
$$(z-a)^3 = 0$$
 gives $z = a$

Hence z = a is a triple pole and

 $Z = 0, \pm 1, \pm 2 \dots$ are simple pole

 $Z = \infty$ is a limit point of these simple pole therefore $z = \infty$ is non-isolated essential singulality.

(c) Here

$$u - v = \frac{cosx + sinx}{2cosx - e^4 - e^{-4}}$$

$$= \frac{1}{2} \left[1 + \frac{2cosa + 2sinx - 2e^{-y}}{2cosx - e^{y} - e^{-y}} - 1 \right]$$

$$= \frac{1}{2} \left[1 + \frac{sinx + sinhy}{cosx - coshy} \right]$$
Now

$$\int u = \int v = \frac{1}{2} \left[cosx(cosx - coshy) + \frac{(sinx + sinh)}{cosx - coshy} + \frac{(sinx + sinh)}{cosx - coshy} + \frac{(sinx + sinh)}{cosx - coshy} \right]$$

Now $\frac{\int u}{\int u} - \frac{\int v}{\int u} = \frac{1}{2} \left[cosu(cosx - coshy) + \frac{(sinx+sinhy)siny}{(cosx-coshy)^2} \right]$ $- \frac{1}{2} \left[1 - \frac{cosxcoshy+sinxsinhy}{(cosx-coshy)^2} \right]$

$$= \frac{1}{2} \left[1 - \frac{1}{(\cos x - \cos hy)^2} \right] \dots (1)$$
$$\frac{\int u}{\int y} - \frac{\int v}{\int y} = \frac{1}{2} \left[\frac{\cosh y \cos x + \sinh y \sin x - 1}{(\cos x - \cosh y)^2} \right]$$

https://plutusias.com/

Or
$$\frac{\int y}{\int x} - \frac{\int u}{\int x} = \frac{1}{2} \left[\frac{\cosh y \cos x + \sinh y \sin x - 1}{(\cos x - \cosh y)^2} \right]$$
 ...(ii) (using C-R equation)
Solving (i) and (ii) we get

$$\frac{\int u}{\int x} = \frac{1}{2} \left[\frac{1 - \cos x \cosh y}{(\cos x - \cosh y)^2} \right] = \emptyset_1(x, y)$$

$$ans \frac{\int v}{\int x} = \frac{\sin x \sinh y}{2(\cos x - \cosh y)^2}$$

$$\therefore \qquad F(z) = \frac{\int u}{\int x} + \frac{\int v}{\int x} = \emptyset_1(z, 0) + i \emptyset_2(z, 0)$$

$$= \frac{1}{2} \times \frac{1}{(1 - \cos z)}$$

$$= \frac{1}{4} (\cos ec^2) \frac{z}{2}$$

$$\therefore \qquad F(z) = \frac{1}{4} \int \csc^2 \frac{z}{2} d_2 + c$$

$$= -\frac{1}{2} \cot \frac{z}{2} + c$$
At $z = \frac{\pi}{2}$, $F(z) = 0$

$$\therefore C = F\left(\frac{\pi}{2}\right) + \frac{1}{4} \cot \frac{1}{4}$$

$$\therefore F(z) = \frac{1}{2} (1 - \cot \frac{z}{2})$$
(d) $x^3 - 6x + 4 = 0$
Let $F(x) = x^3 - 6x + 4$

We know that

$$x_{n+1} = x_n - \frac{F(x_n)}{F(x_n)}$$

$$x_0 = 0$$

$$x_1 = .667$$

$$x_2 = .7302$$

$$x_3 = .732$$

$$x_4 = .7321$$

n	x_0	F(x ₀)	F'(x ₀)	<i>x</i> ₁

1	0	4	-6	.667
2	.6667	.2963	-4.6667	.7302
3	.7302	.0083	-4.4006	.732
4	.732	0	-4.3923	.7321

5(e) According to the question.

Let x and y be number of quintal purchased by the company of A and B respectively then Minimize Z = 200x + 400y

Subject to constrait

So, minimum Z is 53,332

5(a)

Let < R, +, .> be the given using with unity then <R, +> is an additive abedian group. We denote it by $R^{\rm +}$

Horn (R^+, R^+) is a ring with unity

Define a mapping $F : R \to \text{Horn } g_r(x) = rx, x \in R^+$

Since g, $(x + y) = r(x + y) = rx + ry = g_r(x) + g_r(y)$

We find g_r is abonomorphism

Thus $g_r \in Horn(R^+, R^+)$

Again $r_1 = r_2$ $r_1x = r_2x$ for all $x \in \mathbb{R}^+$ $g_{r1}(x) = g_{r2}(x)$ for all x $F(r_1) = F(r_2)$ Or that F is a well defined mapping Again $F(r_1) = F(r_2)$ $g_{r1} = g_{r2}$ $g_{r1}(x) = g_{r2}(x)$ for all $x \in \mathbb{R}^+$

 $r_1 x = r_2 x$ for $x \in \&^+$

In Particular $r_1 - 1 = r_2 \cdot 1$ as $1 \in \&^+$

 $r_1 = r_2$

Or that F is one one PLUIUS Again $F(r_1 + r_2) = g_{r1 + r2}$ $F(r_1) + F(r_2) = g_{r1} + g_{r2}$ Where $g_{r_1+r_2}(x) = (r_1 + r_2)x = r_1x + r_2x = g_{r_1}(x) + g_{r_2}(x)$ $= g_{r1} + g_{r2}$ Or that $F(r_1 + r_2) = F(r_1) + F(r_2)$ Now $F(r_1r_2) = gr_1r_2$ and $F(r_1) F(r_2) = g_{r_1}g_{r_2}$ Where $g_{r1r2}(x) = (r_1r_2)x = r_1(r_2x)$ $= g_{r1} (r_2 d)$ $= g_{r1}(g_{r2}(\mathbf{x}))$ $= (g_{r1}g_{r2})x$ For all x. $g_{r1r2}=g_{r1}g_{r2}$ Or that $F(r_1r_2) = F(r_1)F(r_2)$ F is a homomorphism Hence an imbeeding maping 6(b) Minimize $z = x_1 - 3x_2 - 2x_3$ Subject to

 $3x_1-x_2+2x_3\leq 7$

$$2x - 4x_2 \ge 12$$

$$-4x_1 + 3x_2 + 8x_3 = 10$$

$$x_1, x_2 \ge 0 \text{ and } x_3 \text{ is unrestricted}$$
Let
$$x_3 = x_3^2 - x_3^{13}, x_3^2 \text{ and } x_3^{13} \ge 0$$

$$2x - 1, x_2 \ge 2(x_3^2 - x_3^{11}) \le 7$$

$$2x_1 - 4x_2 \ge 12$$

$$-4x_1 + 3x_2 + 8(x_3^1 - x_3^{11}) \le 7$$

$$2x_1 - 4x_2 \ge 12$$

$$-4x_1 + 3x_2 + 8(x_3^1 - x_3^{11}) \le 10$$

$$x_1, x_2, x_3^1, x_3^{11} \ge 0$$
Minimize
$$z = x_1 - 3x_2 - 2(x_3^1 - x_3^{11}) \ge 7$$

$$2x_1 - 4x_2 \ge 12$$

$$-4x_1 + 3x_2 + 8(x_3^1 - x_3^{11}) \ge 7$$

$$2x_1 - 4x_2 \ge 12$$

$$4x_1 - 3x_2 - 8(x_3^2 - x_3^{11}) \ge 7$$

$$2x_1 - 4x_2 \ge 12$$

$$4x_1 - 3x_2 - 8(x_3^2 - x_3^{11}) \ge 10$$
Hs dual is
$$Z = -7y_1 + 12y_2 - 10y_3^1 + 10y_3^{11}$$
Hs dual is
$$Z = -7y_1 + 12y_2 - 10y_3^1 + 10y_3^{11}$$

$$-3y_1 + 2y_2 + 4y_3^1 - 4y_3^{11} \le -7$$

$$2y_1 + 8y_3^1 + 8y_3^{11} \le -2$$

$$2y_1 + 8y_3^1 - 8y_3^{11} \le 2$$

$$y_1, y_2, y_3^1, y_3^{11} \ge 0$$
Let
$$y_3 = y_3^1 - y_3^{11}$$
Then Maximize
$$Z = -7y_1 + 12y_2 - 10(y_3)$$
Subject to
$$-3y_1 + 2y_2 + 4y_3 \le 1$$

$$y_1 - 4y_2 - 3y_3 \le -3$$

$$-2y_1 - 8y_2 = -2$$

 $y_1, y_2 \ge 0$ and y_3 is unrestricted

(7)

Х	30°	35°	40°	45°	50°
F(x)=Sinx	.5000	.5736	.6428	.7071	.7660

Х	F(x)	$\Delta F(\mathbf{x})$	$\Delta^2 F(x)$	$\Delta^{3}F(x)$	$\Delta^4 F(x)$		
30°	.5000	.0736					
35°	.5736		0044				
40°	.6428		0049	0005	0		
45°	.7071	.0589	0054	0005			
50°	.7660						
By newton forward interpolation formula							

$$F(x) = F(x0) + P\Delta F(x0) + \frac{P(P-1)\Delta^2 F(x_0)}{2!} + \frac{P(P-1)(P-2)\Delta^3 F(x_0)}{3!}$$

= .5000 + .4 × (.0736) + $\frac{(.4)(.4-1)}{2}$ × (.0044) + $\frac{(.4)(.4-1)(.4-2)}{3!}$ (.0005)
= .5000 + .02944 + (.001056) [here P = $\frac{32-30}{5}$ = .4]
= .5304768

7(a)

X	У	z	F(x, y, z)	
1	1	1	$1 \rightarrow$	xyz
1	1	0	$1 \rightarrow$	xyz
1	0	1	$1 \rightarrow$	xyz
1	0	0	$0 \rightarrow$	xyz
0	1	1	1	
0	1	0	0	
0	0	1	0	
0	0	0	0	

	D1	D_2	D_3	\mathbf{D}_4
A	16	10	14	11
B	14	11	15	15
С	15	15	13	12
D	13	12	14	15

First we convert it to minimization problem, we subtract each by largest value is 46 in this case.

(18) $\partial z^5 - 6z^2 + z + 1 = 0$

Let $F(2) = 2z^5$ and $g(z) = z - 6z^2 + 1$

Now on the circle |z| = 1 we have

$$|F(z)| = |2z^{5}| = 2$$
$$|g(z)| = |z - 6z^{2} + 1| \le |z| + |6z^{2}| + 1 \le 8$$
$$g(z) > F(z).$$

Thus g(z) will have same root as

F(z) + g(z) [Rouche theorem] $g(z) = z - 6z^{2} + 1$ or $6z^{2} - z - 1 = 0$ (3z + 1)(2z + 1) $g(z) = z = \frac{1}{2}, -\frac{1}{3}$ So F(2) + g(2) has two roots inside $\alpha z^{5} - 6z^{2} + 2 = 0$ For |z| = 2, Let $f(z) = \alpha z^{5}$ and $g(z) = -6z^{2} + 2 + 1$ $\begin{bmatrix} 0 & 6 & 2 & 5 \\ 2 & 5 & 1 & 1 \\ 1 & 1 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{bmatrix}$

Subtracting minimum element from each row and column respectively we get

0	5	1	4
2	4	0	0
1	0	2	3
3	3	1	0

We need exactly four lines to cover all zero, hence optionality is reached.

 $A \to P_1, B \to D_3, C \to D_2, D \to D_y$

Maximum profit = 16 + 15 + 15 + 15

(a) $2x_1 - x_2 + 3x_3 + x_4 = 6$

$$4x_1 - 2x_2 - x_3 + 2x_4 = 10$$

total number of solution is

$$4C_2 = 6$$
.

Ax = b

. .

$$A\begin{bmatrix} 2 & -1 & 3 & 1 \\ 4 & -2 & -1 & 2 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, b = \begin{bmatrix} 6 \\ 10 \end{bmatrix}$$

Since the rank of A is 2, the maximum number of linearly independent columns of A is 2.

Thus we consider any of the $\alpha \times 2$ sub-matrices as basic matrix B

$$\begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix}, \begin{bmatrix} -1 & 3 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ -2 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$$

Let B =
$$\begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix}$$

A basic solution to the system is obtained by taking $x_3 = x_4 = 0$ and solving the system.

$$\begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \end{bmatrix}$$

as $\begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix} = 0, 1$ B is not $Z - I$
And $Z - I$
B is not $Z - I$
If $B = \begin{bmatrix} -1 & 3 \\ -2 & -1 \end{bmatrix}$ then $x_1 = x_4 = 0.$
Solving $\begin{bmatrix} -1 & 3 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \end{bmatrix}$
We get $x_3 = \frac{2}{7}, \qquad x_2 = \frac{-36}{7}$
 $\therefore \qquad \left(0, \frac{-36}{7}, \frac{2}{7}, 0\right)^T$ is one of the basic solution.
If $B = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then $x_1 = x_2 = 0$
 $\therefore \qquad \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}, \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \end{bmatrix}$

We get
$$x_3 = \frac{2}{7}$$
, $x_4 = \frac{36}{7}$
 $\therefore \qquad \left(0, 0, \frac{2}{7}, \frac{36}{7}\right)^T$ is one of the basic solution.
Similarly $\left(\frac{18}{7}, 0, \frac{2}{7}, 0\right)^T$ is one of the basis solution and $\begin{bmatrix} -1 & 1 \\ 2 & 2 \end{bmatrix}$, $\begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix}$ are not L.I.
Thus $\left(0, 0, \frac{2}{7}, \frac{36}{7}\right)^T$, $\left(\frac{18}{7}, 0, \frac{2}{7}, 0\right)^T$ and $\left(0, \frac{-36}{7}, \frac{2}{7}, 0\right)^T$ are the basic solution.
8(a) Let $y_1 + 2 = x_1$, $y_2 + 1 = x_2$ and $y_3 + 1 = x_3$ then $y_3 + 1 = x_3$ then
Min $z = -6(y_1 + 2) - 2(y_2 + 1) - 5(y_3 + 1)$
= $-6y - 2y_1 - 5y_3 - 29$
S.C
 $2y_1 - 3y_2 + y_3 \le 10$
 $-4y_1 + y_2 + 10y_3 \le 20$
 $2y_1 + 2y_2 - 4y_3 \le 43$
and $y_1, y_2, y_3 > 0$
max $z' = -min z$
max $z' = 6y_1 + 2y_2 + 5y_3 + 29$
S.c
 $2y_1 - 3y_2 + y_3 + y_3 + 0y_5 + 0y_6 = 10$
 $-4y_1 + 4y_2 + 10y_3 + 0y_4 + y_5 + 0y_6 = 20$
 $2y_1 + 2y_2 - 4y_3 + 0y_4 + 0y_5 + y_6 = 43 d d$

	Cj	6	2	5	0	0	0		
C _B	Basis	y 1	y ₂	У3	y ₄	y 5	y ₆	b	θ
0	У4	2	-3	1	1	0	0	10	$\frac{10}{2}$
0	y ₃	-4	4	10	0	1	0	20	
6	66	2	2	_4	0	0	1	43	$\frac{43}{2}$
Zj		0	0	0	0	0	0		

$$C_j - z_j$$
 0 0 13 $\frac{-4}{3}$ 0 $\frac{-22}{10}$

	Cj	6	2	5	0	0	0		
C _B	Basis	y ₁	y ₂	y ₃	y 4	y 5	y ₆	b	θ
6	y1	1	0	0	$\frac{22}{50}$	$\frac{1}{10}$	$\frac{17}{50}$	$\frac{1952}{100}$	$\frac{149}{10}$
5	y 3	0	0	1	$\frac{12}{50}$	$\frac{1}{10}$	$\frac{2}{50}$	$\frac{33}{25}$	266
2	y ₂	0	1	0	$\frac{2}{50}$	$\frac{1}{10}$	$\frac{12}{50}$	$\frac{33}{5}$	$\frac{298}{25}$
Zj		6	2	5	$\frac{196}{50}$	$\frac{13}{10}$	$\frac{136}{50}$		

$$C_{j} - z_{j} \qquad 0 \qquad 0 \qquad \frac{-98}{25} \qquad \frac{-13}{10} \qquad \frac{-68}{50}$$

$$\therefore \qquad \Delta y \le 0$$

$$\therefore \qquad y_{1} = \frac{976}{50}, \qquad y_{2} = \frac{298}{25}, \qquad y_{3} = \frac{133}{25}$$

$$x_{1} = \frac{1076}{50}, \qquad x_{2} = \frac{323}{25}, \qquad x_{3} = \frac{208}{25}$$

$$\therefore \qquad \max z' = 6y_{1} + 2y_{2} + 5y_{3} + 29$$

$$= 196.56$$

(b) Define a map $\theta: \frac{G}{k} \rightarrow G^{1} \text{ S.t}$

$$\theta(Ka) = F(a), a \in 4$$

to show that θ is an isomorphism.
DUTUSS

$$\frac{\Theta \text{ is well defined}}{B}$$

$$\Rightarrow \qquad ab^{-1}\varepsilon k = kei\hat{T}$$

$$\Rightarrow \qquad F(a) = F(b)$$

$$\Rightarrow \qquad \phi(ka) = \phi(kb)$$

 θ is 1^{-1}

$$\theta(ka) = \theta(kb)$$

 $F(a) = F(b)$
 $ab^{-1}\varepsilon K$
 $Ka = Kb$

Q is homomorphism

Let $g \in G^1$ be any element. Since $F : G \to G^1$ is onto $\exists g \in G$ s.t

https://plutusias.com/

$$F(g_1 = g')$$

Now $\theta(kg1 = F(g) = g^1)$

Hence θ is an isomorphism.

 $F(g) = g^1$

Now

$$\theta\left(kg^{1}=F\left(g\right)=g^{1}\right)$$

Hence θ is an isomorphism.

(c)
$$\frac{dy}{dx} = x + y^2$$
.

Given that $F(x, y) = x + y^2$

Here we take h = -1 and carry out the calculations in two steps.

<u>Step - 1</u> $x_{0} = 0, y_{0} = 1, h = -1$ $K_{1} = hF(x_{0}, y_{0}) = -1$ $K_{2} = hF\left(x_{0} + \frac{n}{2}, y_{0} + \frac{k_{1}}{2}\right) = .1152$ $K_{3} = hF\left(x_{0} + \frac{n}{2} + y_{0} + \frac{k_{2}}{2}\right) = .1168$ $K_{4} = hF(x_{0} + h_{1}y_{0} + k_{3}) = .1347$ $K = \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4}) = .1165$

 \therefore $y(0-1) = y_0 + k = 1.1165$

$$x_{1} = x_{0} + n = .1, \qquad y_{1} = .1165, h = .1$$

$$k_{1} = hF(x, y) = .1347$$

$$k_{2} = hF\left(x_{1} + \frac{h_{1}}{2} + y_{1} + \frac{1}{2}k_{1}\right)$$

$$= .1531$$

$$k_{3} = hF\left(x_{1} + \frac{h}{2}, y_{1} + \frac{k_{2}}{2}\right) = .1516$$

$$k_4 = hF(x_1 + h_1, y_1 + k_3) = .1823$$
$$k = \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = .1571$$

Hence $y(.2) = y_1 + k = 1.2736$

